Embedded Coder™ Release
Notes

LN N

How to Contact MathWorks

www . mathworks.com Web

comp.soft-sys.matlab Newsgroup

www . mathworks.com/contact_TS.html Technical Support
suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports

doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)
508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098

For contact information about worldwide offices, see the MathWorks Web site.
Embedded Coder™ Release Notes
© COPYRIGHT 2011 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program

or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used

or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Bug Reports

Summary by Version

Version 6.0 (R2011a) Embedded Coder Software

Compatibility Summary for Embedded Coder
Softwarec.iiiiiiii e e

iii

iv Contents

Embedded Coder™ Release Notes

Bug Reports

Software is inherently complex and is not free of errors. The output of a code
generator might contain bugs, some of which are not detected by a compiler.
MathWorks reports critical known bugs brought to its attention on its Bug
Report system at http://www.mathworks.com/support/bugreports/. Use the
Saved Searches and Watched Bugs tool with the search phrase “Incorrect
Code Generation” to obtain a report of known bugs that produce code that
might compile and execute, but still produce wrong answers.

The bug reports are an integral part of the documentation for each release.
Examine periodically all bug reports for a release, as such reports may
identify inconsistencies between the actual behavior of a release you are using
and the behavior described in this documentation.

In addition to reviewing bug reports, you should implement a verification and
validation strategy to identify potential bugs in your design, code, and tools.

http://www.mathworks.com/support/bugreports/

Embedded Coder™ Release Notes

Summary by Version

This table provides quick access to what is new in each version. For
clarification, see “Using Release Notes” on page 2.

Version (Release) New Features and | Version Fixed Bugs and
Changes Compatibility Known Problems
Considerations
Latest Version Yes Yes Bug Reports
V6.0 (R2011a) Details Summary Includes fixes

Using Release Notes
Use release notes when upgrading to a newer version to learn about:

* New features

® Changes

¢ Potential impact on your existing files and practices

Review the release notes for other MathWorks® products required for this

product (for example, MATLAB® or Simulink®). Determine if enhancements,
bugs, or compatibility considerations in other products impact you.

If you are upgrading from a software version other than the most recent one,

review the current release notes and all interim versions. For example, when
you upgrade from V1.0 to V1.2, review the release notes for V1.1 and V1.2.

What Is in the Release Notes
New Features and Changes

® New functionality

¢ Changes to existing functionality

http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a

Summary by Version

Version Compatibility Considerations

When a new feature or change introduces a reported incompatibility between
versions, the Compatibility Considerations subsection explains the
impact.

Compatibility issues reported after the product release appear under Bug
Reports at the MathWorks Web site. Bug fixes can sometimes result

in incompatibilities, so review the fixed bugs in Bug Reports for any
compatibility impact.

Fixed Bugs and Known Problems

MathWorks offers a user-searchable Bug Reports database so you can view
Bug Reports. The development team updates this database at release time
and as more information becomes available. Bug Reports include provisions
for any known workarounds or file replacements. Information is available
for bugs existing in or fixed in Release 14SP2 or later. Information is not
available for all bugs in earlier releases.

Access Bug Reports using your MathWorks Account.

Documentation on the MathWorks Web Site

Related documentation is available on mathworks.com for the latest release
and for previous releases:

e Latest product documentation

e Archived documentation

http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/support/bugreports/
http://www.mathworks.com/help/
http://www.mathworks.com/help/doc-archives.html

Embedded Coder™ Release Notes

Version 6.0 (R2011a) Embedded Coder Software

This table summarizes what is new in Version 6.0 (R2011a):

New Features and Changes | Version Compatibility Fixed Bugs and Known
Considerations Problems

Yes Yes—Details labeled Bug Reports

Details below as Compatibility Includes fixes
Considerations, below.
See also Summary

New features and changes introduced in this version are:

e “Coder Product Restructuring” on page 5

¢ “Data Management Enhancements and Changes” on page 10
e “AUTOSAR Enhancements” on page 13

e “SIL and PIL Enhancements” on page 15

® “Code Generation Enhancements” on page 16

® “Code Generation Verification (CGV) API Updates” on page 17
e “MISRA-C Code Generation Objective” on page 21

¢ “New Model Advisor Check for Code Efficiency of Lookup Table Blocks”
on page 22

¢ “Enhanced Code Generation Optimization” on page 22

e “Target Function Library Replacement Based on Computation Method for
Reciprocal Sqrt, Sine, and Cosine” on page 23

e “C++ Encapsulation Allowed for Referenced Models in For Each
Subsystems” on page 23

¢ “Improved Code Generation for Portable Word Sizes” on page 24
¢ “‘Improved Comments in the Generated Code” on page 24

¢ “Replacement Data Types and Simulation Mode for Referenced Models”
on page 24

¢ “Changes for Embedded IDEs and Embedded Targets” on page 25

http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a
http://www.mathworks.com/support/bugreports/?product=EC&release=R2011a

Version 6.0 (R2011a) Embedded Coder™ Software

e “Changes to ver Function Product Arguments” on page 33

® “New and Enhanced Demos” on page 34

Coder Product Restructuring

® “Product Restructuring Overview” on page 5

® “Resources for Upgrading from Real-Time Workshop Embedded Coder”
on page 6

e “Migration of Embedded MATLAB Coder Features to MATLAB® Coder”
on page 7

e “Migration of Embedded IDE Link and Target Support Package Features
to Simulink® Coder and Embedded Coder” on page 7

® “Interface Changes Related to Product Restructuring” on page 8

¢ “Simulink Graphical User Interface Changes” on page 9

* “Compatibility Considerations” on page 9

Product Restructuring Overview

In R2011a, the Embedded Coder™ product replaces the Real-Time Workshop®
Embedded Coder product. Additionally,

¢ The Simulink® Coder™ product combines and replaces the Real-Time
Workshop and Stateflow® Coder™ products

¢ The Real-Time Workshop facility for converting MATLAB code to C/C++
code, formerly referred to as Embedded MATLAB® Coder, has migrated to
the new MATLAB® Coder™ product.

® The previously existing Embedded IDE Link™ and Target Support
Package™ products have been integrated into the new Simulink Coder and
Embedded Coder products.

The following figure shows the R2011a transitions for C/C++ code generation
related products, from the R2010b products to the new MATLAB Coder,
Simulink Coder, and Embedded Coder products.

Embedded Coder™ Release Notes

Target
Support
Package

Embedded
IDE Link

embedded

Real-Time

Worksho
Embedded Embetded

Coder __Coder _J

)
Stateflow

- - Coder
Simulink -

Coder

Real-Time
Workshop

Resources for Upgrading from Real-Time Workshop Embedded
Coder

If you are upgrading to Embedded Coder from Real-Time Workshop
Embedded Coder, review information about compatibility and upgrade issues
at the following locations:

¢ “Compatibility Summary for Embedded Coder Software” on page 35 (latest
release)

® On the MathWorks web site, in the Archived documentation, select R2010Db,
and view the following tables, which are provided in the release notes
for Real-Time Workshop Embedded Coder: Compatibility Summary for
Real-Time Workshop Embedded Coder Software:

This table provides compatibility information for releases up through
R2010b.

e If you use the Embedded IDE Link or Target Support Package capabilities
that now are integrated into Simulink Coder and Embedded Coder, go
to the Archived documentation and view the corresponding tables for
Embedded IDE Link or Target Support Package:

http://www.mathworks.com/help/doc-archives.html
http://www.mathworks.com/help/doc-archives.html

Version 6.0 (R2011a) Embedded Coder™ Software

= Compatibility Summary for Embedded IDE Link (R2010b)
= Compatibility Summary for Target Support Package (R2010b)

You can also refer to the rest of the archived documentation, including release
notes, for the Real-Time Workshop, Stateflow Coder, Embedded IDE Link,
and Target Support Package products.

Migration of Embedded MATLAB Coder Features to MATLAB
Coder

In R2011a, the MATLAB Coder function codegen replaces the Real-Time
Workshop function emlc. The emlc function still works in R2011a but
generates a warning, and will be removed in a future release. For more
information, see “Generating C/C++ Code from MATLAB Code” in the
MATLAB Coder documentation.

Migration of Embedded IDE Link and Target Support Package
Features to Simulink Coder and Embedded Coder

In R2011a, the capabilities formerly provided by the Embedded IDE Link and
Target Support Package products have been integrated into Simulink Coder
and Embedded Coder. The following table summarizes the transition of the
Embedded IDE Link and Target Support Package supported hardware and
software into Coder products.

Former Product Supported Simulink | Embedded
Hardware and Coder Coder
Software

Embedded IDE Link Altium® TASKING X
Analog Devices™ X
Visual DSP++®
Eclipse™ IDE X X
Green Hills® MULTI® X
Texas Instruments’ X
Code Composer
Studio™

http://www.mathworks.com/help/doc-archives.html

Embedded Coder™ Release Notes

Former Product Supported Simulink | Embedded
Hardware and Coder Coder
Software

Target Support Analog Devices™ X

Package Blackfin®
ARM® X
Freescale™ MPC5xx X
Infineon® C166® X
Texas Instruments™ X
C2000™
Texas Instruments X
C5000™
Texas Instruments X
C6000™
Linux® OS X X
Windows® OS X
VxWorks® RTOS X

Interface Changes Related to Product Restructuring

You will see interface changes as part of restructuring the Coder products.

¢ In the Simulink Configuration Parameters dialog box, changes to code
generation related elements

¢ In Simulink menus, changes to code generation related elements

® In Simulink blocks, including block parameters and dialog boxes, and block
libraries, changes to code generation related elements

¢ In error messages, tool tips, demos, and product documentation, references
to Real-Time Workshop Embedded Coder, Real-Time Workshop, and
Stateflow Coder and related terms are replaced with references to the

latest software

Version 6.0 (R2011a) Embedded Coder™ Software

Simulink Graphical User Interface Changes

Where...

Previously...

NOW...

Configuration
Parameters dialog
box

Real-Time Workshop
pane

Code Generation
pane

Model diagram window

Tools > Real-Time
Workshop

Tools > Code
Generation

Subsystem context
menu

Real-Time Workshop

Code Generation

Subsystem Parameter
dialog box

Following parameters

on main pane:

¢ Real-Time
Workshop system
code

¢ Real-Time
Workshop
function name
options

e Real-Time
Workshop
function name

¢ Real-Time
Workshop file
name options

¢ Real-Time
Workshop
file name (no
extension)

On new Code
Generation pane
and renamed:

¢ Function
packaging

¢ Function name
options

¢ Function name
¢ File name options

¢ File name (no
extension)

Compatibility Considerations

In the Help browser Contents pane, Embedded Coder is now listed with the
products for MATLAB, because Embedded Coder now supports both MATLAB
Coder and Simulink Coder workflows.

Embedded Coder™ Release Notes

10

Data Management Enhancements and Changes

¢ “Memory Section Enhancements” on page 10

¢ “No Longer Able to Set RTWInfo or CustomAttributes Property of Simulink
Data Objects” on page 10

e “Parts of Data Class Infrastructure No Longer Available” on page 11

® “No Longer Generating Pragma for Data Defined with Built-In Storage
Class ExportedGlobal, ImportedExtern, or Imported ExternPointer” on
page 12

¢ “Simulink.CustomParameter and Simulink.CustomSignal Data Classes To
Be Deprecated in a Future Release” on page 13

Memory Section Enhancements

® Pragmas are now added to data and function declarations (prior to R2011a
they were added to definitions only); at compile time, this makes the
compiler aware of memory locations for functions and data, potentially
optimizing generated code

e New function category is available for shared utilities on the Code
Generation > Memory Sections pane: “Shared utility”

¢ Referenced models can have a memory section that is different from that of
the top model for the InitTerm and Execute function categories

No Longer Able to Set RTWInfo or CustomAttributes Property
of Simulink Data Obijects

You can no longer set the RTWInfo or CustomAttributes property of a
Simulink data object from the MATLAB Command Window or a MATLAB
script. Attempts to set these properties generate an error.

Although you cannot set RTWInfo or CustomAttributes, you can still set
subproperties of RTWInfo and CustomAttributes.

Compatibility Considerations. Operations from the MATLAB Command
Window or a MATLAB script, which set the data object property RTWInfo or
CustomAttributes, generate an error.

Version 6.0 (R2011a) Embedded Coder™ Software

For example, a MATLAB script might set these properties by copying a data
object as shown below:

Simulink.Parameter;

Simulink.Parameter;

.RTWInfo = a.RTWInfo;

.RTWInfo.CustomAttributes = a.RTWInfo.CustomAttributes;

[o 28K @ 2K @ i V]

To copy a data object, use the object’s deepCopy method.

QO
1}

Simulink.Parameter;
a.deepCopy;

e
I

Parts of Data Class Infrastructure No Longer Available
Simulink has been generating warnings for usage of the following data class
infrastructure features for several releases. As of R2011a, the features are
no longer supported.

® Custom storage classes not captured in the custom storage class
registration file (csc_registration) — warning displayed since R14SP2

e Built-in custom data class attributes BitFieldName and
FileName+IncludeDelimiter — warning displayed since R2008b

Instead of... Use...
BitFieldName StructName

FileName+IncludeDelimiterHeaderFile

e Initial value of MPT data objects inside mpt.CustomRTWInfoSignal —
warning displayed since R2006a

11

Embedded Coder™ Release Notes

12

Compatibility Considerations.

® When you use a removed feature, Simulink now generates an error.

® When loading a MAT-file that uses an unsupported feature, the load
operation suppresses the generated error such that it is not visible. In
addition, MATLAB silently deletes data that had been associated with the
unsupported feature. To prevent loss of data when loading a MAT-file, load
and resave the file with R2010b or earlier.

No Longer Generating Pragma for Data Defined with
Built-In Storage Class ExportedGlobal, ImportedExtern, or
ImportedExternPointer

The code generator no longer generates a pragma around definitions or

declarations for data that has the following built-in storage classes:

® ExportedGlobal

® ImportedExtern

® ImportedExternPointer

Prior to R2011a, based on model configuration parameters for specifying

memory sections and the built-in storage class defined for data, the code
generator would do the following:

For Built-In Storage Class... Generate pragma Around...

ExportedGlobal Data definition and
declaration

ImportedExtern Data declaration

ImportedExternPointer Data declaration

The code generator now treats data with these built-in storage classes like
custom storage classes with no memory section specified.

Compatibility Considerations. To work around this change, select a
custom storage class that uses the memory section of interest for the data.

Version 6.0 (R2011a) Embedded Coder™ Software

Simulink.CustomParameter and Simulink.CustomSignal Data
Classes To Be Deprecated in a Future Release

In a future release, data classes Simulink.CustomParameter and
Simulink.CustomSignal will no longer be supported because they are
equivalent to Simulink.Parameter and Simulink.Signal.

Compatibility Considerations. If you use the data class
Simulink.CustomParameter or Simulink.CustomSignal, Simulink posts a
warning that identifies the class and describes one or more techniques for
eliminating it. You can ignore these warnings in R2011a, but consider making
the described changes now because the classes will be removed in a future
release.

AUTOSAR Enhancements

The following enhancements are available in R2011a.

Calibration Parameters

Previously, the software supported only calibration parameters that were
defined by a calibration component. These parameters could be accessed by
all AUTOSAR Software Components. The AUTOSAR standard also specifies
an internal calibration parameter that is defined and accessed by only one
AUTOSAR Software Component. The software now supports:

e AUTOSAR internal calibration parameters, including the import and
export of initial values of these parameters.

® A bus object data type (AUTOSAR record type) to import and export both
kinds of calibration parameters.

For more information, see “Calibration Parameters” and “Configuring
Calibration Parameters” in the Embedded Coder documentation.

Multiple Runnables from Virtual Subsystems

Previously, if a wrapper subsystem had virtual subsystems containing
function-call subsystems, you could not export the function-call subsystems
as AUTOSAR runnables from the wrapper subsystem level. Now, within

a wrapper subsystem, you can group function-call subsystems into virtual
subsystems and generate runnables for these function-call subsystems. See

13

Embedded Coder™ Release Notes

“Configuring Multiple Runnables” and “Exporting AUTOSAR Software
Component” in the Embedded Coder documentation.

Support for Code Descriptor Elements

The AUTOSAR standard specifies that the XML description of an AUTOSAR
Software Component implementation must contain code descriptor elements
to describe generated source files and include header files. This feature allows
AUTOSAR authoring tools that import software components to automate

the building process for source code.

Previously, the software did not generate the software component
implementation file (nodelname _implementation.arxml) with these code
descriptor elements. Now, when you build a Simulink model for an AUTOSAR
target, the software generates a CODE-DESCRIPTORS element within the
SWC_IMPLEMENTATION element. The CODE-DESCRIPTORS element contains
XFILE elements that provide descriptions of the generated code.

For example, if you build the model rtwdemo_autosar_counter, the generated
file rtwdemo_autosar_counter_implementation.arxml has the following
SWC_IMPLEMENTATION element:

<SWC-IMPLEMENTATION>
<SHORT -NAME>rtwdemo_autosar_counter</SHORT-NAME>
<CODE-DESCRIPTORS>
<CODE>
<SHORT -NAME>Code</SHORT - NAME>
<TYPE>SRC</TYPE>
<XFILES>
<XFILE>
<SHORT-NAME>rtwdemo_autosar_counter_c</SHORT-NAME>
<CATEGORY>GeneratedFile</CATEGORY>
<URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.c</URL>
<TOOL>Embedded Coder</TOOL>
<TOOL -VERSION>5.6</TOOL-VERSION>
</XFILE>
<XFILE>
<SHORT-NAME>rtwdemo_autosar_counter_h</SHORT-NAME>
<CATEGORY>GeneratedFile</CATEGORY>

Version 6.0 (R2011a) Embedded Coder™ Software

<URL>rtwdemo_autosar_counter_autosar_rtw\rtwdemo_autosar_counter.h</URL>
<TOOL>Embedded Coder</TOOL>
<TOOL-VERSION>5.6</TOOL-VERSION>
</XFILE>
</XFILES>
</CODE>
</CODE-DESCRIPTORS>
<CODE -GENERATOR>Embedded Coder 5.6 (R2011a) 26-Aug-2010</CODE-GENERATOR>

<PROGRAMMING - LANGUAGE>C</PROGRAMMING - LANGUAGE>
</SWC- IMPLEMENTATION>

SIL and PIL Enhancements

Code Execution Profiling

You can collect execution time measurements in a specified base workspace
variable during a software-in-the-loop (SIL) or processor-in-the-loop (PIL)
simulation. At the end of the simulation, you can view or analyze the
measurements within the MATLAB environment. This feature allows you to
collect an execution time profile for each task within your generated code.

The software supports code execution profiling for all types of SIL or PIL
simulations except the SIL block.

For more information, see “Code Execution Profiling” in the Embedded Coder
documentation.

PIL Block Parameter Tuning

R2011a supports parameter tuning for the PIL block, which allows you

to change tunable workspace parameters between or during simulations
without regenerating code. This feature also includes support for tunable
structure parameters. For more information, see “I/O Support” and “Tunable
Parameters and SIL/PIL”.

15

Embedded Coder™ Release Notes

Top-Model SIL/PIL and PIL Block Parameter Initialization
R2011a supports automatic definition and initialization of parameters with
imported storage classes. For more information, see “I/O Support” and
“Imported Data Definitions”.

Model Block Parameter Tuning and Model Initialization

Previously, the software did not support the following features for Model
block SIL/PIL:

¢ Simplified initialization mode

® Tunable structure parameters

R2011a now supports these features. For more information, see
“Configuration Parameters Support”, “I/O Support”, and “Tunable Parameters
and SIL/PIL”.

Code Generation Enhancements

Improved Code for Data Store Memory In-place Assignment

Previously, the generated code for a Data Store Memory block used data
copies to perform data store assignments. The generated code now eliminates
the data copies and performs an in-place assignment. This improvement
generates less code, uses less memory, and provides faster execution.

Improvements to Target Function Library Replacements
Enhancements to Target Function Library Replacements (TFL) include:

e [f multiple TFL replacements occur within a function, temporary variables
are now reused instead of creating extra temporary variables. This
enhancement reduces the stack size during TFL replacement.

¢ During TFL replacement, if unnecessary temporary variables are
introduced when block output is not the returned value of the function but
one of the input arguments, code generation now removes the temporary
variable. This enhancement improves execution speed and requires less
memory.

Version 6.0 (R2011a) Embedded Coder™ Software

For more information, see “Introduction to Target Function Libraries”.

Improved Loop Fusion
Code generation now includes the following:

* An improved loop fusion algorithm that reduces data copies. This
enhancement decreases stack size, ROM consumption, and code generation
time.

e Selectively fuses loops when the loop count is larger than the “Loop
unrolling threshold”. In these cases, loop unrolling allows the code
generator to perform more optimizations. In addition, the code generator
groups the statements together to assign values to the elements of a signal
or parameter array, which improves data access and code readability.

Improved Array Indexing

The generated code is optimized for more efficient array indexing. When a
complex instruction is used repeatedly in an array index, the instruction is
replaced with a temporary variable to perform the calculation more efficiently.
This enhancement improves execution speed and reduces code size.

Improvement on Matrix Parameter Pooling

For matrix parameters with the same flattened value, the generated code now
pools the matrix parameters even when they have different shapes. This
enhancement reduces ROM consumption.

Readability Improvements Involving Data References

For references to the root inport and outport, as well as DWork, unnecessary
parentheses are removed from the generated code. This enhancement
produces more readable code.

Code Generation Verification (CGV) APl Updates

Support for Adding Multiple Callback Functions

In R2011a, the cgv.CGV class includes new methods to add callback functions.
These methods replace the cgv.CGV.addCallback method which added only a

17

Embedded Coder™ Release Notes

18

pre-execution callback function. Now, the new methods allow CGV to invoke
callback functions at several stages of the cgv.CGV.run execution. The new
methods are:

e cgv.CGV.addHeaderReportFcn adds a callback function invoked before

executing any input data in the cgv.CGV object.

cgv.CGV.addPreExecReportFcn adds a callback function invoked before
executing each input data file in the cgv.CGV object.

cgv.CGV.addPreExecFcn adds a callback function invoked before executing
each input data file in the cgv.CGV object.

cgv.CGV.addPostExecReportFcn adds a callback function invoked after
executing each input data file in the cgv.CGV object.

cgv.CGV.addPostExecFcn adds a callback function invoked after executing
each input data file in the cgv.CGV object.

cgv.CGV.addTrailerReportFcn adds a callback function invoked after
executing all input data in the cgv.CGV object.

New Functionality Added to the cgv.CGV Class

The cgv.CGV class now includes the following methods:

cgv.CGV.activateConfigSet activates the configuration set of a model.
cgv.CGV.addBaseline adds a file of baseline data for comparison.
cgv.CGV.copySetup creates a copy of a cgv.CGV object.
cgv.CGV.setMode specifies the mode of execution (sim, sil, or pil).

cgv.CGV.copySetup returns the status of the execution of the cgv.CGV
object.

The cgv.CGV class now includes the following properties:

Name

Description

Version 6.0 (R2011a) Embedded Coder™ Software

Compatibility Considerations

Previously, the cgv.CGV class included parameters that you set to perform
automatic configuration checks of your model. In R2011a, cgv.CGV class no
longer performs automatic configuration checks. Instead, you can use the
cgv.Config class to perform a manual configuration check of your model.
Before calling cgv.CGV.run, MathWorks recommends that you perform

a manual configuration check of your model. Otherwise, an error might
occur later in the process. For more information, see “Verifying Numerical
Equivalence with Code Generation Verification”.

Changes to the cgv.CGV class parameters are listed in the following table.

Parameter

What Happens
When You Use
Parameter?

Use This Parameter
Instead

Compatibility
Considerations

LogMode removed from
cgv.CGV

Errors

LogMode parameter in
cgv.Config

To check your model
before running

CGV, pass the
LogMode parameter

to the constructor

for cgv.Config.

Then call the
cgv.Config.configModel
method to adjust the
model configuration.

Processor removed
from cgv.CGV

Errors

Processor parameter
in cgv.Config

To check your model
before running

CGV, pass the
Processor parameter
to the constructor

for cgv.Config.

Then call the
cgv.Config.configModel
method to adjust the
model configuration.

19

Embedded Coder™ Release Notes

20

Parameter What Happens Use This Parameter | Compatibility
When You Use Instead Considerations
Parameter?

SaveModel removed Errors SaveModel parameter | To check your model

from cgv.CGV

in cgv.Config

before running

CGV, pass the
SaveModel parameter
to the constructor

for cgv.Config.

Then call the
cgv.Config.configModel
method to adjust the
model configuration.

ConfigModel removed
from cgv.CGV

Warns if set to of f

Errors if set to on

cgv.Config.configModel
method

To check your model
before running

CGYV, replace the
cgv.CGVConfigModel
parameter with

a call to the
cgv.Config.configModel
method

CheckInterface
parameter from
cgv.CGV

Warns if set to of f

Errors if set to on

CheckOutports
parameter in
cgv.Config

To check your model
before running
CGV, pass the
CheckOutports
parameter to

the constructor

for cgv.Config.
Then call the
cgv.Config.configModel
method to adjust the
model configuration.

tasking and custom
values removed from
the Connectivity
parameter of cgv.CGV

Errors

pil, a new value
for the cgv.CGV
Connectivity
parameter

Replace calls

to the cgv.CGV
constructor using
the parameter-value
arguments,
('Connectivity',

Version 6.0 (R2011a) Embedded Coder™ Software

Parameter What Happens Use This Parameter | Compatibility
When You Use Instead Considerations
Parameter?
"tasking') or
('Connectivity',
‘custom'), with
('Connectivity,
'pil').
Changes to the cgv.Config class parameters are listed in the following table:
Parameter What Happens Use This Parameter | Compatibility
When You Use Instead Considerations
Parameter?
CheckOutports Defaults to on. If your script fixes

parameter added
to cgv.Config

Then checks that
the model outport
configuration is
compatible with the
cgv.CGV object.

Compiles the model.

errors reported by
cgv.Config, you can
set CheckOutports to
off.

LogMode parameter
from cgv.Config

Change in behavior

If you do not give a
value for LogMode, no
changes are made to
the configuration
parameters for

logging.

MISRA-C Code Generation Objective

The Code Generation Advisor now includes a new objective for MISRA-C:2004
guidelines. To set the new objective, open the Configuration Parameters
dialog box and select the Code Generation pane. In the Code Generation
Advisor section, click the Set objectives button to open the Code Generation
Advisor dialog box. In the Available objectives list, select MISRA-C:2004
guidelines and click the select button (arrow pointing right) to move the

21

Embedded Coder™ Release Notes

22

objective to the Selected objectives list. For more information on setting
objectives, see “Configuring Code Generation Objectives”.

New Model Advisor Check for Code Efficiency of
Lookup Table Blocks

The Simulink Model Advisor includes the following new check for code
efficiency of lookup table blocks: “Identify lookup table blocks that generate
expensive out-of-range checking code”. By default, the following blocks
generate code that checks for out-of-range breakpoint inputs:

e 1-D Lookup Table
e 2.D Lookup Table
* n-D Lookup Table
® Prelookup

Similarly, the Interpolation Using Prelookup block generates code that checks
for out-of-range index inputs. Running this Model Advisor check helps you
identify lookup table blocks that generate out-of-range checking code for
breakpoint or index inputs.

For more information about the Model Advisor, see “Consulting the Model
Advisor” in the Simulink documentation.

Enhanced Code Generation Optimization

The Optimize using specified minimum and maximum values code
generation option now takes into account the minimum and maximum values
specified for:

® A Simulink.Parameter object provided that it is used on its own. It does
not use these minimum and maximum values if the object is part of an
expression. For example, if a Gain block has a gain parameter specified
as K1, where K1 is defined as a Simulink.Parameter object in the base
workspace, the optimization takes the minimum and maximum values
of K1 into account. However, if the Gain block has a gain parameter of
K1+5 or K1+K2+K3, where K2 and K3 are also Simulink.Parameter objects,

Version 6.0 (R2011a) Embedded Coder™ Software

the optimization does not use the minimum and maximum values of K1,
K2 or K3.

e All design ranges specified on block outputs in a conditionally-executed
subsystem, except for the block outputs that are directly connected to an
Outport block.

For more information, see “Optimizing Generated Code Using Specified
Minimum and Maximum Values”.

Target Function Library Replacement Based on
Computation Method for Reciprocal Sqrt, Sine, and
Cosine

Target function libraries (TFLs) now support the ability to control replacement
of certain math functions using their computation method as a distinguishing
attribute. For example,

® The rSqrt block can be configured to use either of two computation
methods, Newton-Raphson or Exact.
® The Trigonometric Function block, with Function set to sin or cos, can be

configured to use either of two approximation methods, CORDIC or None.

You can configure TFL table entries to replace these functions for one or all
of the available computation methods. For example, you could replace only
Newton-Raphson instances of the rSqrt function.

For more information, see “Replacing Math Functions Based on Computation
Method” in the Embedded Coder documentation.

C++ Encapsulation Allowed for Referenced Models
in For Each Subsystems

In previous releases, due to a code generation limitation, code could not be
generated for a For Each Subsystem block under the following conditions:

¢ The For Each Subsystem block directly or indirectly contains a Model block.

® The Model block references a model for which C++ encapsulation is selected.

23

Embedded Coder™ Release Notes

24

R2011a removes this limitation. You can now generate code for a For Each
Subsystem in which a referenced model uses C++ encapsulation.

Improved Code Generation for Portable Word Sizes

In the software-in-the-loop (SIL) simulation work flow, the model option
Enable portable word sizes allows you to take code intended for a specific
target platform and compile and run the same code on a MATLAB host
platform that uses different processor word sizes. R2011a enhances the code
generated for portable word sizes by inserting explicit casts to help protect
against integral promotion differences and other behavior differences between
host and target. This potentially can reduce the incidence of numerical
differences due to host/target behavior differences. For more information, see
“Configuring Hardware Implementation Settings for SIL” and “Portable Word
Sizes Limitations” in the Embedded Coder documentation.

Improved Comments in the Generated Code

R2011a provides improvements to comment generation for better readability
and understanding of the generated code. Specifically, comments are located
closer to the referring code and more accurately reflect the intent of the
code. An end comment is now included at the end of a control flow block of
code. For information on customizing comments in the generated code, see
“Customizing Comments in Generated Code”.

Replacement Data Types and Simulation Mode for
Referenced Models

To replace built-in data type names with user-defined data type names in the
generated code for a referenced model, you must set the Simulation mode
parameter for the Model block to one of the following:

* Normal

® Software-in-the-loop (SIL)

® Processor-in-the-loop (PIL)

For more information, see “Renaming and Replacing Data Types” and
“Referenced Model Simulation Modes” in the Simulink documentation.

Version 6.0 (R2011a) Embedded Coder™ Software

Changes for Embedded IDEs and Embedded Targets

e “Feature Support for Embedded IDEs and Embedded Targets” on page 25
¢ “Execution Profiling during PIL Simulation” on page 26

e “Location of Blocks for Embedded Targets” on page 26

e “Location of Demos for Embedded IDEs and Embedded Targets” on page 28
e “Multicore Deployment with Rate-Based Multithreading” on page 29

¢ “Windows-Based Code Generation and Remote Build On Linux Target
(BeagleBoard)” on page 29

e “Capture Video Input from USB Cameras on Linux and Embedded Linux”
on page 29

® “Changes to Frame-Based Processing” on page 29

® “New Support for Analog Devices Blackfin BF50x and BF51x Processors”
on page 31

® “Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-AS8,
and Cortex-A9 Processors” on page 32

e “Support for Versions 5.0.6 and 5.1.6 of Green Hills® MULTI” on page 32
® “Support for Texas Instruments Delfino C2834x Processors” on page 32
¢ “Ending Support for Altium TASKING in a Future Release” on page 33
¢ “Ending Support for Freescale MPC5xx in a Future Release” on page 33
¢ “Ending Support for Infineon® C166 in a Future Release” on page 33

¢ “Removed Methods and Arguments” on page 33

Feature Support for Embedded IDEs and Embedded Targets

The Embedded Coder software provides the following features as implemented
in the former Target Support Package and former Embedded IDE Link
products:

® Automation Interface

® Processor-in-the-Loop (PIL) Simulation

¢ Execution Profiling

25

Embedded Coder™ Release Notes

26

¢ Execution Profiling during PIL Simulation

e Stack Profiler

* External Mode

¢ Schedulers and Timing

® Makefile Generation (XMakefile)

e Target Function Library (TFL) Optimization

® Multicore Deployment for Rate Based Multithreading

Note You can only use these features in the 32-bit version of your
MathWorks products. To use these features on 64-bit hardware, install and
run the 32-bit versions of your MathWorks products.

Execution Profiling during PIL Simulation

During Processor-in-the-loop (PIL) simulation, you can profile synchronous
tasks in code running on the target. For more information, see Execution
Profiling during PIL Simulation

Location of Blocks for Embedded Targets

Blocks from the former Target Support Package product and Embedded IDE
Link product now reside under Embedded Coder in the Embedded Targets
block library, as shown.

Version 6.0 (R2011a) Embedded Coder™ Software

-\l Embedded Coder

= AUTOSAR

- Configuration Wizards

Host Communication

%--Dperating Systems.

. - Embedded Linux

L - VxWorks

-)-Processors
%--Analug Devices Blackfin
%--Analng Devices SHARC
+ - Analog Devices TigersHARC
+ Freescale MPCS35x MPCTdxx
+ ~Freescale MPCSxx
+ Infineon C166
%—--T&xas Instruments C2000
%--T&xas Instruments C5000
+- Texas Instruments CE000

- Module Packaging
Embedded Targets includes the following types of blocks:

® Host Communication
® QOperating Systems
= Embedded Linux
= VxWorks
® Processors
= Analog Devices Blackfin
= Analog Devices™ SHARC®
= Analog Devices™ TigerSHARC®
= Freescale MPC55xx MPC74xx
= Freescale MPCbhxx
= Infineon C166

27

Embedded Coder™ Release Notes

28

= Texas Instruments C2000
= Texas Instruments C5000
= Texas Instruments C6000

Location of Demos for Embedded IDEs and Embedded Targets

Demos from the former Target Support Package product and Embedded
IDE Link product now reside under Simulink Coder product help. Click the
expandable links, as shown.

- Simulink Coder

-- [* Getting Started

--4:.)' User's Guide

--‘-7-:? Reference

- [=1 Blocks

ﬁf Functions

> y Examples
=% y Demos
---Basic Intreductions and Examples
[#-Guided Tutorials
---ﬂxccelerated Simulations
---Multirate Support
---Gptimizatinns
&-Fixed-Point
[#-Function, File and Data Packaging
---‘u‘a riants
---Cu:u:le Format and Style
---Cu:u:le Verification and Documentation
---Integrating with C Code
[#-Integrating with C++ Code
---Integrating with Custemn Envirenments (IDEs and Targets)
~Desktop IDEs
B-Desktop Targets
F-Embedded IDEs
[+-Embedded Targets

Version 6.0 (R2011a) Embedded Coder™ Software

Multicore Deployment with Rate-Based Multithreading

You can deploy rate-based multithreading applications to multicore processors
running Embedded Linux and

VxWorks. This feature improves performance by taking advantage of
multicore hardware resources.

Also see the “Running Target Applications on Multicore Processors” user’s
guide topic.

Windows-Based Code Generation and Remote Build On Linux
Target (BeagleBoard)

You can generate a makefile project on a Windows host machine, transfer the
makefile project to an remote target running Linux, such as a BeagleBoard,
and then build the executable on the remote target.

Capture Video Input from USB Cameras on Linux and
Embedded Linux

You can use the new Video Capture block to develop and prototype video
applications for Embedded Linux running on platforms such as the
BeagleBoard. This block uses the Linux V4L2 API device driver framework,
which supports most USB cameras.

Video Capture block can synthesize several types of video outputs. On Linux
host computers, the block can also generate a live video output during model
simulations. For more information, see the Linux Video Capture block
reference topic. See the Video Stabilization demo in the product help for
Simulink Coder under “Demos”.

Changes to Frame-Based Processing

Signal processing applications often process sequential samples of data at
once as a group, rather than one sample at a time. MathWorks documentation
refers to the former as frame-based processing and the latter as sample-based
processing. A frame is a collection of samples of data, sequential in time. To
perform frame-based processing in MathWorks products, you must have a
DSP System Toolbox™ license.

29

Embedded Coder™ Release Notes

30

Historically, Simulink-family products that can perform frame-based
processing propagate frame-based signals throughout a model. The frame
status is an attribute of the signals in a model, just as data type and
dimensions are attributes of a signal. The Simulink engine propagates the
frame attribute of a signal with a frame bit, which can either be on or off.
When the frame bit is on, Simulink interprets the signal as frame-based, and
displays it as a double line, rather than as a single line.

Beginning in R2010b, MathWorks started to change the handling of
frame-based processing significantly. In the future, signal attributes will not
include frame status. Instead, individual blocks will control whether they
treat data inputs as frames or as samples.

To transition to this new paradigm, blocks that can perform sample- and
frame-based processing contain a new Input processing parameter that
specifies the appropriate processing behavior. You can set Input processing
to Columns as channels (frame based) or Elements as channels
(sample based). The third option, Inherited (this choice will be
removed - see release notes), is a temporary selection. This third option
helps you migrate your existing models from the old paradigm to the new
paradigm.

In R2011a, the following Embedded Coder blocks received a new Input
processing parameter:

C62X Real Forward Lattice All-Pole IIR
C62X Complex FIR

C62X General Real FIR

C62X Real IIR

C64X Real Forward Lattice All-Pole ITR

Compatibility Considerations. When you load an existing model in
R2011a, blocks with the new Input processing parameter shows a setting of
Inherited (this choice will be removed - see release notes). This
setting enables your existing models to work as expected until you upgrade
them. Upgrade your models as soon as possible.

Version 6.0 (R2011a) Embedded Coder™ Software

To upgrade your existing models, use the slupdate function. This function
detects all blocks that have Input processing set to Inherited (this
choice will be remove - see release notes). The function asks you
whether to upgrade each block. If you select yes, the function detects the
status of the frame bit on the input port of the block. If the frame bit is 1
(frames), the function sets the Input processing parameter to Columns as
channels (frame based). If the bit is 0 (samples), the function sets the
parameter to Elements as channels (sample based).

A future release will remove the frame bit and the Inherited (this choice
will be removed - see release notes) option. At that time, if you

have not updated the model, the software automatically sets the Input
processing parameter. The software uses the library default setting of the
block to select either Columns as channels (frame based) or Elements as
channels (sample based). If the library default setting does not match the

parameter setting in your model, your model will produce unexpected results.

Additionally, after the removal of the frame bit, you will no longer be able to
upgrade your models using the slupdate function. Therefore, upgrade your
existing modes using slupdate as soon as possible.

New Support for Analog Devices Blackfin BF50x and BF51x
Processors

You can now generate code for the following embedded processors when you
use Embedded Coder software:

e BF504
e BF504F
e BF506F
e BF512
e BF514
e BF516
e BF518

31

Embedded Coder™ Release Notes

32

Generate Optimized Fixed-Point Code for ARM Cortex-M3,
Cortex-A8, and Cortex-A9 Processors

You can use new Target Function Libraries (TFLs) to generate efficient
fixed-point code for the ARM Cortex-M3, Cortex-A8, and Cortex-A9 processors.
These TFLs include GCC compiler extensions and intrinsic functions that
optimize the code Embedded Coder generates for these processors.

Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI

Support for Green Hills MULTI software now includes versions 5.0.6 and
5.1.6. For additional information about supported versions, see the Support
for Green Hills MULTI topic online.

Support for Texas Instruments Delfino C2834x Processors

You can now generate code for the following embedded processors when
you use Embedded Coder software with Texas Instruments Code Composer
Studio™ software:

* (28341
o (28342
* (28343
o (28344
e (28345
* (28346

The new “C2834x (c2834xlib)” block library contains the following blocks:

® (C2000 CAN Calibration Protocol

* (280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Input
* (280x/C2802x/C2803x/C28x3x/c2834x GPIO Digital Output
* (C280x/C2802x/C2803x/C28x3x/C2834x 12C Receive

* (C280x/C2802x/C2803x/C28x3x/C2834x [2C Transmit

* (C280x/C2802x/C2803x/C28x3x/C2843x SCI Receive

* (C280x/C2802x/C2803x/C28x3x/C2843x SCI Transmit

http://sharepoint/SearchCenter/results.aspx?k=marshall&s=Everything
http://sharepoint/SearchCenter/results.aspx?k=marshall&s=Everything

Version 6.0 (R2011a) Embedded Coder™ Software

* (C280x/C2802x/C2803x/C28x3x/C2843x SPI Receive

® (C280x/C2802x/C2803x/C28x3x/C2843x SPI Transmit

o (C280x/C2802x/C2803x/C28x3x/C2843x Software Interrupt Trigger
e (C28x Watchdog

* (C280x/C2803x/C28x3x/c2834x eCAN Receive

® (280x/C2803x/C28x3x/c2834x eCAN Transmit

® (280x/C2802x/C2803x/C28x3x/c2834x eCAP

® (280x/C2802x/C2803x/C28x3x/c2834x ePWM

e (C280x/C2803x/C28x3x/c2834x eQEP

Ending Support for Altium TASKING in a Future Release

Support for the Altium TASKING IDE will end in a future release of the
Embedded Coder product.

Ending Support for Freescale MPC5xx in a Future Release

Support for the Freescale MPCb5xx processor family will end in a future
release of the Embedded Coder product.

Ending Support for Infineon C166 in a Future Release

Support for the Infineon C166 processor family will end in a future release of
the Embedded Coder product.

Removed Methods and Arguments

Deprecated the type property for the Code Composer Studio IDE object. For
example, entering the following text generates an error message:

infolist = IDE_Obj.list(type)

Changes to ver Function Product Arguments

The following changes have been made to ver function arguments related to
embedded code generation products:

33

Embedded Coder™ Release Notes

¢ The new argument 'embeddedcoder' returns information about the
installed version of the Embedded Coder product.

® The argument 'ecoder', which previously returned information about the
installed version of the Real-Time Workshop® Embedded Coder™ product,
no longer works. The software displays a “not found” warning.

For more information about using the function, see the ver documentation.

Compatibility Considerations

If a script calls the ver function with the 'ecoder' argument, update the
script appropriately. For example, you can update the ver call to use the
‘embeddedcoder' argument.

New and Enhanced Demos
The following demos have been added in R2011a:

Demo... Shows How You Can...

coderdemo_tfl Use target function libraries (TFLs) to replace

operators and functions in code generated by
MATLAB Coder.

rtwdemo_code_coverage script Generate model coverage and code coverage reports,
and use these reports to compare model coverage
and code coverage results for any part of a model.

rtwdemo_pmsmfoc_script Perform system-level simulation and algorithmic
code generation using Field-Oriented Control for a
Permanent Magnet Synchronous Machine.

The following demos have been enhanced in R2011a:

Demo... Now...

vipstabilize fixpt beagleboard Uses the new Video Capture block to simulate
or capture a video input signal in the Video
Stabilization demo.

Compatibility Summary for Embedded Coder™ Software

Compatibility Summary for Embedded Coder Software

This table summarizes new features and changes that might cause
incompatibilities when you upgrade from an earlier version, or when you

use files on multiple versions. Details are provided in the description of the

new feature or change.

Version (Release)

New Features and Changes with Version

Compatibility Impact

Latest Version
V6.0 (R2011a)

See the Compatibility Considerations

subheading for each of these new features or

changes:

Code Generation Verification classes,
cgv.CGV and cgv.Config

“Changes to ver Function Product
Arguments” on page 33

“Changes to Frame-Based Processing” on
page 29

“Coder Product Restructuring” on page 5

35

	toc
	Bug Reports
	Summary by Version
	Using Release Notes
	What Is in the Release Notes
	New Features and Changes
	Version Compatibility Considerations
	Fixed Bugs and Known Problems
	Documentation on the MathWorks Web Site

	Version 6.0 (R2011a) Embedded Coder Software
	Coder Product Restructuring
	Product Restructuring Overview
	Resources for Upgrading from Real-Time Workshop Embedded Coder
	Migration of Embedded MATLAB Coder Features to MATLAB Coder
	Migration of Embedded IDE Link and Target Support Package Featur
	Interface Changes Related to Product Restructuring
	Simulink Graphical User Interface Changes
	Compatibility Considerations

	Data Management Enhancements and Changes
	Memory Section Enhancements
	No Longer Able to Set RTWInfo or CustomAttributes Property of Si
	Parts of Data Class Infrastructure No Longer Available
	No Longer Generating Pragma for Data Defined with Built-In Stora
	Simulink.CustomParameter and Simulink.CustomSignal Data Classes

	AUTOSAR Enhancements
	Calibration Parameters
	Multiple Runnables from Virtual Subsystems
	Support for Code Descriptor Elements

	SIL and PIL Enhancements
	Code Execution Profiling
	PIL Block Parameter Tuning
	Top-Model SIL/PIL and PIL Block Parameter Initialization
	Model Block Parameter Tuning and Model Initialization

	Code Generation Enhancements
	Improved Code for Data Store Memory In-place Assignment
	Improvements to Target Function Library Replacements
	Improved Loop Fusion
	Improved Array Indexing
	Improvement on Matrix Parameter Pooling
	Readability Improvements Involving Data References

	Code Generation Verification (CGV) API Updates
	Support for Adding Multiple Callback Functions
	New Functionality Added to the cgv.CGV Class
	Compatibility Considerations

	MISRA-C Code Generation Objective
	New Model Advisor Check for Code Efficiency of Lookup Table Bloc
	Enhanced Code Generation Optimization
	Target Function Library Replacement Based on Computation Method
	C++ Encapsulation Allowed for Referenced Models in For Each Subs
	Improved Code Generation for Portable Word Sizes
	Improved Comments in the Generated Code
	Replacement Data Types and Simulation Mode for Referenced Models
	Changes for Embedded IDEs and Embedded Targets
	Feature Support for Embedded IDEs and Embedded Targets
	Execution Profiling during PIL Simulation
	Location of Blocks for Embedded Targets
	Location of Demos for Embedded IDEs and Embedded Targets
	Multicore Deployment with Rate-Based Multithreading
	Windows-Based Code Generation and Remote Build On Linux Target (
	Capture Video Input from USB Cameras on Linux and Embedded Linux
	Changes to Frame-Based Processing
	New Support for Analog Devices Blackfin BF50x and BF51x Processo
	Generate Optimized Fixed-Point Code for ARM Cortex-M3, Cortex-A8
	Support for Versions 5.0.6 and 5.1.6 of Green Hills MULTI
	Support for Texas Instruments Delfino C2834x Processors
	Ending Support for Altium TASKING in a Future Release
	Ending Support for Freescale MPC5xx in a Future Release
	Ending Support for Infineon C166 in a Future Release
	Removed Methods and Arguments

	Changes to ver Function Product Arguments
	Compatibility Considerations

	New and Enhanced Demos

	Compatibility Summary for Embedded Coder Software

